Comparison of crossbridge dynamics between intact and skinned myocardium from ferret right ventricles.
نویسندگان
چکیده
This study compares the crossbridge kinetics of intact and skinned preparations from ferret cardiac muscles at 20 degrees C to determine whether skinning causes any alteration in the crossbridge response to an imposed length change. A papillary or trabecular muscle was isolated from the right ventricle, the muscle length adjusted to give the maximum twitch tension (Lmax), and the preparation was subjected to Ba2+ contracture. When steady tension developed, the length of the preparation was perturbed sinusoidally in 19 discrete frequencies, ranging from 0.13 to 135 Hz, and at a small peak-to-peak amplitude (0.25% Lmax). We identified three exponential processes in the sinusodial force-response to the imposed length oscillation, and these were labeled processes B, C, and D in order of increasing speed. A slow process, A, normally present in fast-twitch skeletal muscles, is very small or absent in cardiac muscles. Process B is an exponential delay, and the muscle produces oscillatory work on the forcing apparatus; processes C and D are exponential advances in which the muscle absorbs work. The preparation was chemically skinned and activated in the presence of (mM) CaEGTA 6 (pCa 4.55), MgATP 5, magnesium propionate 1, and phosphate 1, pH 7.0, with ionic strength adjusted to 200 mM with potassium propionate. We found that the crossbridge kinetics were not altered by the skinning procedure. The apparent rate constants extracted from the sinusoidal analysis were nearly identical in Ba2+ contracture (intact preparation) and in Ca2+ activation (skinned preparation), and the Nyquist plots were similar. Because the rate constants changed sensitively with the substrate (MgATP) concentrations, we concluded that the substrate is adequately supplied during Ba2+ contracture in the intact preparation. Our study demonstrates the compatibility of results obtained from an intact and from a skinned preparation.
منابع مشابه
Sarcoplasmic reticulum Ca(2+) release by 4-chloro-m-cresol (4-CmC) in intact and chemically skinned ferret cardiac ventricular fibers.
The purpose of this study was to determine whether 4-chloro-m-cresol (4-CmC) could generate caffeine-like responses in ferret cardiac muscle. The concentration dependence of 4-CmC-mediated release of Ca(2+) from the sarcoplasmic reticulum was studied in intact cardiac trabeculae and saponin-skinned fibers in which the sarcoplasmic reticulum was loaded with Ca(2+). In intact and saponin-skinned ...
متن کاملCa2+ and segment length dependence of isometric force kinetics in intact ferret cardiac muscle.
The influence of Ca2+ and sarcomere length on myocardial crossbridge kinetics was studied in ferret papillary muscle by measuring the rate of force redevelopment following a rapid length step that dropped the force to zero. Tetanic stimulation with 5 mumol/L ryanodine was used to obtain a steady-state contraction, and segment length was measured and controlled using a sense-coil technique that ...
متن کاملDoxorubicin impairs crossbridge turnover kinetics in skinned cardiac trabeculae after acute and chronic treatment.
Crossbridge dynamics underlying the acute and chronic inotropic effects of doxorubicin (Dox) were studied by application of releasing length steps (amplitude, 0.5-10%) to skinned cardiac trabeculae. Acute incubation of trabeculae with 20 microM Dox for 30 min resulted in a decrease of the velocity of unloaded shortening (V(0), from 9.3 +/- 1.1 to 7.7 +/- 0.7 microm/s, P <.05) and in an increase...
متن کاملSingle Ventricular Myocytes From Rats
In vitro biochemical experiments have suggested that stimulation of ,B-adrenergic receptors may increase the rate of crossbridge cycling in mammalian myocardium, but recent attempts to demonstrate a mechanical correlate have yielded conflicting results. To investigate this issue, we measured the effect of isoproterenol (ISO) and cAMP-dependent protein kinase (PKA) on unloaded shortening velocit...
متن کاملPhosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle.
Phosphorylation of cardiac myofibrils by cAMP-dependent protein kinase (PKA) can increase the intrinsic rate of myofibrillar relaxation, which may contribute to the shortening of the cardiac twitch during beta-adrenoceptor stimulation. However, it is not known whether the acceleration of myofibrillar relaxation is due to phosphorylation of troponin I (TnI) or of myosin binding protein-C (MyBP-C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 68 3 شماره
صفحات -
تاریخ انتشار 1991